SEISMIC INSTRUMENTATION TECHNOLOGY SYMPOSIUM Palm Springs, CA • November 10-11, 2009

Specifications For Building Instrumentation

Derek A. Skolnik Robert L. Nigbor and John W. Wallace

DAS SPECIFICATIONS

SMIP Specifications

- Recommended specifications for civil structures (buildings)
- Based on qualitative assessment and experience

Recommended Specification	ANSS (USGS 2005)	CSMIP (CGS 2007)	
Sensor Range ADC Resolution	±4g 16bits	± 4g 18bits	R (bits/g)
Sample Rate	200sps	200sps	S (sps)
Sample Sync	1% ∆t	0.2ms	T _{se} (ms)
Reference Time	1.0ms	0.5ms	se (IIIS)
Clock Stability	0.1ppm	1min/month	

Guideline for ANSS Seismic Monitoring of Engineered Civil Systems, USGS Report 2005-1039
Integrated Tri-Axial Accelerograph, CGS/DGS SYSREQ 2007-TR

10

DAS SPECIFICATIONS

Data Acquisition Systems (DAS)

- Sampling sample rate $(sps = 1 / \Delta t)$
- Quantization resolution (LSB = Range / 2 Bits)
- Time stamp for synchronization of multiple channels

DAS SPECIFICATIONS

Data Acquisition Errors

- Sampling initial sampling instant and clock jitter
- Quantization Differential Non-Linearity (DNL)

OUTLINE

- Introduction
- DAS Specifications
- DAQ Simulation
- Sensitivity Studies
- Conclusions

Baseline Earthquake Record Set

- 30 EQ records downloaded from PEER, NCESMD, K-Net, KiK-Net, COSMOS
- Selected to capture broad nature of earthquakes
- Digitally enhanced to increase resolution: resample to 2kHz, zero-pads for filtering, band-pass filter 0.1-50Hz

Clock Jitter

- Independent of sample rate
- Can be neglected

Sinusoidal Signal

$$X(t) = A\sin[2\pi f t]$$

100sps

0.742

501/2

Sampled Signal

$$x_i = A \sin \left[2\pi f t_i \right]$$
$$t_i = i \Delta t$$

Jittery Sampled Signal

$$\overline{x}_i = A \sin \left[2\pi f \tau_i \right]$$

$$\tau_i \sim N(t_i, \sigma)$$

Initial Sampling Instant

- Depends on sample rate
- Biased error always negative

Error in peak value (E_p)

X = EQ record

1.
$$t_0 \sim U(0, \Delta t)$$

2.
$$t_i = t_0 + i \cdot \Delta t$$

3.
$$x_i = interp(X @ t_i)$$

4.
$$x_i = round(x_i / res) \cdot res$$

■ R = [6-24] bits/g
$$\rightarrow res = g/2^R$$

30 40dB 50dB

OUTLINE

- Introduction
- DAS Specifications
- DAQ Simulation
- Sensitivity Analysis
- Conclusions

OBJECTIVE

OBJECTIVE

Determine minimum requirements for specifications of sample rate, resolution, and time synchronization

STRATEGY

Quantify the sensitivities of ground motion intensity measures and engineering response quantities to DAQ

APPROACH

- 1. Understand how engineers use strong-motion data
- 2. Simulate the noisy DAQ process
- 3. Perform sensitivity analyses

Intensity Measures

- PGA 100sps, 6bits/g for error less than 5%
- PGV 50sps, 8bits/g for error less than 5%
- PSA 200sps, 8bits/g for error less than 5%

Baseline Building Response Set

- Simulate responses to baseline EQ record set by superimposed first few modal responses
- Assumptions: bounded by flexural & shear idealizations, uniform mass and stiffness, $\zeta_n = 5\%$

$$\phi_n(x) = \sin\left[\frac{2n-2}{2}\frac{\pi x}{H}\right]$$

$$T_n = \beta_n T_1$$

$$\Gamma_n = \frac{\int_0^H m\phi_n(x)dx}{\int_0^H m\left(\phi_n(x)\right)^2 dx}$$

$$a_i = a_g + \sum_{i=1}^N \Gamma_n \phi_{ni} a_n$$

Fundamental Period

- Depends on building structure and height... sort of
- Based on real data from instrumented buildings
- Empirical conventions in code (ASCE 7) are lower bounds

Steel MRF

$$T_s = 0.68 + 0.11N$$

$$T_f = 0.46 + 0.03N$$

ASCE 7-05 S12.8.2.1

$$T_a = C_t h_n^x$$

Displacement (in)

SENSITIVITY ANALYSIS

No correction SNR = -31dB

Detrend SNR = -16.3dB

 $F_c = 0.01Hz$ SNR = -8.9dB

 $F_c = 0.1Hz$ SNR = 20.5dB

 $F_c = 1.0Hz$ SNR = 1.25dB

Optimizing Frequency Cutoff

- High-pass 4th order acausal digital Butterworth filter
- A single floor of a 10-story bldg to one earthquake
- Resolution is important which corroborates Boore's (2003) findings of ADC quantization being a source of numerical drifts

Flexural: $f_n = [0.4, 1.2, 1.9] \text{ Hz}$

100sps ----200sps ----500sps ----

> 8b/g —— 12b/g —— 14b/g —— 18b/g ——

Engineering Demand Parameters

- PFA 100sps, 8b/g for error less than 5%
- PID 100sps, 14b/g for error less than 5%

Shear

Time Synchronization Error

- Sync errors are additional to digitizing error
- PID 200sps, 16b/g and sync to 1.0ms for total error < 5%</p>

10ms

1.0ms

0.1 ms

OUTLINE

- Introduction
- DAS Specifications
- DAQ Simulation
- Sensitivity Analysis
- Conclusions

CONCLUSIONS

Specification	ANSS (USGS 2005)	CSMIP (CGS 2007)	Recommend (Skolnik 2009)
Range	±4g	±4g	±4g
ADC Resolution	16bits	18bits	20bits
Sample Rate	200Hz	200Hz	200Hz
Sample Sync	0.05ms	0.2ms	1.0ms
Reference Time	1.0ms	0.5ms	

Potential Improvements

- Other specifications frequency response, dynamic range, cross-axis sensitivity, sensor layout
- Improved simulations non-uniform stiffness; vary damping ratios, combo flex-shear shapes, non-linear responses
- Other engineering analyses system identification

OUTLINE

- Introduction
- DAS Specifications
- DAQ Simulation
- Sensitivity Studies
- Conclusions

SEISMIC INSTRUMENTATION TECHNOLOGY SYMPOSIUM Palm Springs, CA • November 10-11, 2009

Support provided by NSF CENS and nees@UCLA

Future Publications

BSSA: A quantitative basis for strong-motion instrumentation (12/09)

EQS: A quantitative basis for building instrumentation

Engineering use of Strong-Motion Response Data

 Traditional – validate modeling assumptions and develop code provisions: fundamental period approximation formulas

Modern – tall building issues, structural health monitoring

(SHM)

Tall Building Construction

- Alternative designs citing Chap 16 of ASCE 7
- NDA of 3D FEM w/ suite of motions & peer review
- Exposed fundamental issues: ground motion selection, modeling guidelines, acceptance criteria
- LA-TBSDC publish document for LA-DBS (2008)
- Since 1965 LA requires accelerographs at base, mid-level, and roof
- UCLA, LA-DBS & CSMIP update requirements
- Deployment approval by peer review panel

Stories	Channels	
10 - 20	15	
20 - 30	21	
30 - 50	24	
> 50	30	

One Rincon Hill - MKA

Structural Health Monitoring (SHM)

- Assess health of instrumented structures from measurements
- Detect damage before reaching critical state and allow for rapid post-event assessment
 - Potentially replacing expensive visual inspection which is impractical for wide spread damage in urban areas

Strong Motion Instrumentation Programs (SMIP)

- CSMIP (CGS), ANSS & NSMP (USGS), K-net/KiK-net (Japan), Taiwan Seismology Center (CWB)
- Provide real-time ShakeMaps and data for engineers and scientists to improve hazard mitigation
- Since early 20th century with focus on ground monitoring
- Uniform structural instrumentation specifications are lacking

650 ground 170 buildings

92 ground 51 buildings

Intensity Measures (IM)

- PGA Peak Ground Acceleration
- PGV Peak Ground Velocity
- PSA Peak Response Spectral Pseudo-Acceleration
- MMI Modified Mercalli Intensity

Engineering Demand Parameters (EDP)

- PFA Peak Floor Acceleration
- PID Peak Interstory Drift

Advanced Engineering Analyses

- SID System Identification, Model Updating
- SHM Structural Health Monitoring

OUTLINE

- Introduction
- DAS Specifications
- DAQ Simulation
- Sensitivity Studies
- Conclusions